Eine Zustandsgleichung für reale Gase- abgeleitet aus der Theorie kritischer Phänomene

Mai 1st, 2009

Statt einer der üblichen Zustandsgleichungen für reale Gase kann die folgende einfache Gleichung für den funktionalen Zusammenhang von Druck p/ MPa des Gases, seiner Temperatur T / K und dem spezifischen Volumen v /cm^3/mol angewendet werden:

image851 .                                                                    (1)

Dabei ist p.s der Dampfdruck/ MPa und v” das Sättigungsdampfvolumen / cm^3/mol.  R ist die allgemeine Gaskonstante 8.314 J/mol K.

Die obige Gleichung wurde durch eine Erweiterung der physikalischen Theorie kritischer Phänomene auch auf  Zustände weit unterhalb der kritischen Temperatur als eine einfache Näherung abgeleitet. 

Zwischen dem  Volumen v” des gesättigten Dampfes, der Temperatur T und dem Dampfdruck p.s besteht die folgende Näherungsbeziehung :

image86.                                                                                      (2)

Die Parameter a, b sind dabei die Konstanten der klassischen van der Waals- Gleichung

image92.                                                      (3)

Damit ist es immer möglich,  bei bekanntem Dampfdruck und bekannten kritischen Daten p.k- kritischer Druck/MPa und T.k-kritische Temperatur/ K das Sättigungsdampfvolumen näherungsweise  zu berechnen.

Außerdem ist es so auch immer möglich, bei bekanntem Dampfdruck durch Anwendung von Gleichung (1) Zustandsdaten eines realen Gases zu berechnen!

Die komplette Theorie hierzu- auch ein Zusammenhang mit der Theorie der Flüssigkeiten-  ergibt sich aus einer Ergänzung der klassischen Thermodynamik durch Schlußfolgerungen aus der physikalischen Theorie kritischer Phänomene und mit einem neuen molekular- theoretischen Ansatz zur Festlegung des Eigenvolumens von Molekülen.  Die sich dadurch ergebenden völlig neuen Möglichkeiten der Berechnung

- von p,v,T- Daten realer Gase und Flüssigkeiten ohne Anwendung bisheriger Zustandsgleichungen

-von Sättigungsdaten für Dampf und Flüssigkeit von reinen Stoffen als Temperaturfunktion bis hin zur kritischen   Temperatur

- des Dampfdrucks von reinen Stoffen als Temperaturfunktion (ohne Benutzung der sonst üblichen stoffabhängigen Parameter)

- der Verdampfungsenthalpie reiner Stoffe als Temperaturfunktion bis nahe an die kritische Temperatur

- von Freien Enthalpien reiner Stoffe

- sehr genauer Siedevolumina von Flüssigkeiten in Abhängigkeit von der Temperatur

sind in den einzelnen Artikeln dieses Blogs beschrieben.

Notwendige Erläuterung und Zusammenfassung zum Verständnis der wichtigsten Ergebnisse, die   dargestellt werden:

Die für Stoffeigenschaften maßgeblichen Wechselwirkungen zwischen den Molekülen und Atomen eines Stoffes haben normalerweise eine Reichweite von nur einigen Molekül- bzw. Atomdurchmessern. Im kritischen Zustand und in seiner Nähe entsteht allerdings ein universelles Verhalten physikalischer Größen wegen des Eintretens sogen. “kritischer Fluktuationen”, die sich wie eine beträchtliche Vergrößerung der Teilchenwechselwirkungen auswirken. Dies hat zur Folge, daß Eigenschaften völlig unterschiedlicher Stoffe sich im nahkritischen Zustand nach analog gleichen Gesetzmäßigkeiten verhalten, so als ob individuelle Stoffeigenschaften verschwinden. 

Kritische Phänomene  sind z. B. erklärt für

- den Dichtesprung zwischen flüssiger und dampfförmiger Phase

- die Differenz vom Druck zum kritischen Druck bzw. von der Dichte zur kritischen Dichte  auf der kritischen Isotherme

- Kompressibilitäten

- Wärmekapazitäten

- magnetische Zustände ( Suszeptibilitäten) bei verschwindendem Feld.

Die Aussagen der klassischen Theorien entsprechend der van der Waals- Gleichung und der darauf aufbauenden empirischen Gleichungen treffen für nahkritische Zustände realer Gase und Flüssigkeiten nicht mehr zu. Für nahkritische Zustände gelten  Gesetzmäßigkeiten kritischer Phänomene!

Zum besseren Verständnis der Situation ist folgendes zu erklären:  Die theoretische Grundlage zur Beschreibung des Verhaltens realer Gase ist bekanntlich mit der van der Waals- Gleichung und mit der der statistischen Thermodynamik entsprechenden Virialgleichung gegeben. Das ist auch der Ausgangspunkt für viele Weiterentwicklungen- aber dann immer auf weitgehend empirischer Basis.

Die van der Waals- Gleichung beschreibt die Zustände realer Gase und sogar auch von Flüssigkeiten qualitativ richtig, quantitativ aber zur Auslegung technischer Abläufe keineswegs ausreichend.  Die Ungenauigkeiten im Zweiphasengebiet und für Daten in der Nähe des kritischen Punktes können groß sein.  Vor allem Flüssigkeitszustände werden gar nicht oder nur ungenau erfaßt. Diese Feststellungen betreffen keineswegs nur die van der Waals- Gleichung, sondern auch die in der Technischen Thermodynamik  entstandenen “halbempirischen Zustandsgleichungen” von Soave, Redlich, Kwong und Peng, Robinson u.a., die heute weltweit zur Berechnung von Zustandsdaten angewendet werden.

Die heutigen thermischen Zustandsgleichungen als Grundlage der Berechnung von Stoffdaten für Flüssigkeiten und Gase beruhen alle letzlich auf der physikalisch begründeten van der Waals- Gleichung, der Virialgleichung, auf Ansätzen der statistischen Thermodynamik und vor allem immer wieder auf Parameter- Anpassungen empirischer Berechnungsgleichungen an Meßwerte. Der Aufwand ist hoch. Die empirische Vielfalt ist für Praktiker kaum noch überschaubar. Die unter Physikern manchmal ironisch geäußerte Kritik, daß die sogen. “halbempirischen Zustandsgleichungen” der Technischen Thermodynamik und Verfahrenstechnik ein selbst empirisch erforderliches Niveau ja eigentlich nur zur Hälfte erfüllen, charakterisiert die Situation.

Die Theoretische Physik muß trotz der unbezweifelbaren verfahrenstechnischen Empirie - Erfolge  der letzten Jahrzehnte  Richtschnur im Labyrinth der Möglichkeiten bleiben. Die Suche nach physikalisch begründeten neuen Ansätzen mit geringeren empirischen Anteilen sollte gerade auf dem wichtigen Gebiet der Berechnung von Druck p, Volumen v, Temperatur T- Daten aktuell sein und bleiben.

Die für Praxis- Anwendungen erfolgreichen bisherigen Ansätze der Technischen Thermodynamik und Verfahrenstechnik beruhen letzlich immer auf sogen. ” mean- field”- Theorien.  Das einzelne Teilchen befindet sich dabei in einem mittleren Feld, das von allen anderen Teilchen verursacht wird. Fluktuationen des einzelnen Teilchens werden vernachlässigt.

In der Nähe des kritischen Punktes gilt diese Näherung nicht mehr, da die stattfindenden Fluktuationen nicht mehr vernachlässigt werden werden dürfen. Die Rechnungen mit den klassischen Theorien führen zu falschen Ergebnissen. Erst mit den nun von der Theoretischen Physik formulierten Gesetzmäßigkeiten kritischer Phänomene können richtige Ergebnisse gewonnen werden.

Eigentlich sollte es naheliegend sein, die Gesetzmäßigkeiten kritischer Phänomene in die Theorie- Ansätze der Technischen Thermodynamik, Physikalischen Chemie und Verfahrenstechnik einzubeziehen. Leider ist das in Bezug auf das Zustandsverhalten von Flüssigkeiten und realen Gasen nicht geschehen, obwohl das- wie sich zeigen wird- möglich ist.

Zum Verständnis der physikalischen Theorie und als kurze Zusammenfassung ist zu sagen: Die Theorie stellt fest, daß sich physikalische Größen f(x) in der Nähe des kritischen Punktes wie   

image197

verhalten. Dabei ist x eine Variable, die am kritischen Punkt Null ist. Der Exponent λ wird kritischer Exponent genannt. Er ist mit

image198

definiert. Bei Existenz des Grenzwertes λ wird- f(x) verhält sich wie 

image1971

gesagt. Die Definition der kritischen Exponenten umfaßt keineswegs nur die Proportionalität

image200,

sondern auch komplexere Zusammenhänge- wie

image2011   ,  (A, B,…….Konstanten, y>0).

Die physikalische Größe f(x) kann der Dichtesprung ρ’-ρ” zwischen der flüssigen und dampfförmigen Phase des Stoffes sein, wobei x die Differenz zwischen der jeweiligen Temperatur T und der kritischen Temperatur Tk ist.

Die physikalische Größe f(x) kann auch die Differenz vom Druck p zum kritischen Druck pk auf der kritischen Isotherme sein, wobei x Differenz zwischen der Dichte ρ und der kritischen Dichte ρk auf dieser Isotherme ist.

Für  diese beiden  kritischen Phänomene  werden für nahkritische Zustände im einfachsten Fall die Relationen

image202

vorausgesetzt. Dabei sind const1 und const2 stoffspezifische Konstanten; sgn ist die Vorzeichenfunktion, die je nach Vorzeichen des Arguments +, - 1 ergibt; die Exponenten β und δ sind kritische Exponenten.

Die Theoretische Physik formuliert eine sogen. Universalitätshypothese: “Die kritischen Exponenten sind fast universell, d. h. für alle thermodynamischen Systeme gleich” (Nolting: Grundkurs theoretische Physik 6, Statistische Physik, Springer Verlag 2004), (R.B. Griffiths: Phys.Rev.Lett.24,1949(1970)). Diese Hypothese wird unterdessen als bewiesen betrachtet ( Renormierungsgruppentheorie von K. Wilson).

Entsprechend der Universalitätshypothese haben also die kritischen Exponenten β und δ der kritischen Phänomene- Dichtesprung  und Druck- bzw. Dichtedifferenz auf der kritischen Isotherme für völlig verschiedene Stoffe die jeweils gleichen Werte. Diese sehr erstaunliche Eigenschaft wird als Folge einer beträchtlichen Vergrößerung der Reichweite von Teilchenwechselwirkungen in der Nähe des kritischen Punktes erklärt.

Der kritische Exponent β wird in der Literatur mit Werten 1/3, 0.34,0.36,0.37 angegeben. Die Variation der Werte ist gering und evtl. mit den Schwierigkeiten der Messung zu erklären.

Der kritische Exponent δ wird mit 4.4 +,- 0.4 angegeben (Nolting, s.o.). Dieser Exponent ist mit einem weitgehend unscharfen Wert von 4.0 bis 4.8 benannt. Die Frage ist, ob für die etwas unterschiedlichen β- Werte und für das große δ- Intervall  die Ungenauigkeit der Messung die Ursache ist oder der jeweilige kritische Exponent doch etwas vom Stoff abhängig ist.  Selbst Nachfragen bei namhaften theoretischen Physikern konnten diese Frage nicht völlig klären. Teilweise wurde der Hinweis auf feste Werte der kritischen Exponenten entsprechend der Universalitätshypothese gegeben, teilweise wurde eine gewisse Variabilität kritischer Exponenten bei molekular komplizierter aufgebauten Substanzen (bei z. B. C- Doppelbindungen, aromatischen Ringen usw.) nicht ausgeschlossen.

Im Ergebnis der für den Dichtesprung  und die kritische Isotherme durchgeführten Untersuchungen ist es möglich, wesentliche Schlußfolgerungen zum Zustandsverhalten realer Gase und von  Flüssigkeiten in der Umgebung des kritischen Punktes und für Zustände weit ab von der kritischen Temperatur abzuleiten. Die Erweiterung des Gültigkeitsbereichs von Theorie- Ansätzen kritischer Phänomene nicht nur für Zustände in unmittelbarer Nähe des kritischen Punktes erfolgt als Hypothese unter Einbeziehung mean field- theoretischer Ansätze, die durch die vorliegenden Ergebnisse mit Untersuchungen an konkreten Stoffdaten als berechtigt dargestellt ist.

Für reale Gase niedriger bis hoher Drücke ergibt sich auf  dieser Basis ein funktionaler Zusammenhang zwischen dem Druck p und dem molaren Volumen v auf einer Isotherme der Temperatur T entsprechend der Gleichung

image203  ,                                                          (I)

wobei ps der Dampfdruck, v” das molare Sättigungsdampfvolumen und R die allgemeine Gaskonstante ist.

Es zeigt sich weiter. daß es mit den hier auf der Grundlage der Theorie kritischer Phänomene gewonnenen Ergebnissen  möglich ist, eine allgemeine Beziehung abzuleiten, die die Berechnung des molaren Volumens v” trocken gesättigten Dampfes  bei bekanntem Dampfdruck  als Näherung erlaubt:

image204.                                                                          (II)

Dabei sind a und b die Parameter der klassischen van der Waals- Gleichung realer Gase mit a= 27R²Tk²/64pk und b=RTk/8pk, wobei pk der kritische Druck und Tk die kritische Temperatur ist.

Die sinnvolle Anwendbarkeit dieser Gleichung ist für Zustände näherungsweise von niedrigen bis hohen Temperaturen gegeben, nicht aber für nahkritische Verhältnisse (s. oben).

Oftmals liegen  Dampfdrücke eines Stoffes als Meßwerte für verschiedene Temperaturen vor, so daß die Abhängigkeit des Dampfdruckes von der Temperatur für sehr viele Stoffe bekannt ist oder mit Näherungen bestimmt werden kann.  Für technisch wichtige Stoffe  ist so der Dampfdruckverlauf oft bekannt,so daß das Volumen des trocken gesättigten Dampfes in all diesen Fällen mit (II) als Näherung berechnet werden kann.

In Auswertung der zu kritischen Phänomenen durchgeführten Untersuchungen ergab sich weiterhin die folgende Gleichung:

image205.                                                                    (III)

Dabei ist β ein kritischer Exponent, der hier universell mit β= 1/3 vorausgesetzt ist (s. oben).   Kv ist die sogen. Dichtesprungkonstante.

Die obige Gleichung (III), die dem Dichtesprung zwischen Flüssigkeit und Dampf entspricht, ermöglicht die Berechnung des Sättigungsvolumens v’ der Flüssigkeit bei gegebener Temperatur, wenn v” bereits mit (II) berechnet werden konnte. Die auf diese Art und Weise berechneten Flüssigkeitsvolumina bzw. Dichten stimmen für die verschiedensten Stoffe erstaunlich gut mit Meßwerten überein. 

Für Daten kurz unter der kritischen Temperatur bestehen wegen der am kritischen Punkt sich beträchtlich vergrößernden molekularen Fluktuationen veränderte Bedingungen, die zu anderen sich aus (III)  ableitbaren Berechnungsgleichungen führen. Damit sind dann sogar die Sättigungsvolumina v’ und v” und auch die Dampfdrücke ps für Temperaturen kurz unter der kritischen Temperatur als Näherungen berechenbar, was mit herkömmlichen  thermischen Zustandsgleichungen in Nähe des kritischen Punktes nicht gelingen kann.

Eine in den Variablen p, v, T bestehende thermische Zustandsgleichung werde mit ZG(p,v.T)=0 bezeichnet. Die Zustandsgleichung ZG kann hierbei die van der Waals- Gleichung, die Virialgleichung oder auch eine beliebig  andere die Variablen p,v,T enthaltende sinnvolle Zustandsgleichung sein.

Wenn nun für eine bestimmte Temperatur der Dampfdruck  gegeben ist, muß

image207

gelten. Außerdem muß das Maxwell- Kriterium

image208                                                             (IV)

erfüllt sein.

Es bestehen damit die folgenden zwei Gleichungen als ein Gleichungssystem:

image209.                                                             (V) 

Da das Gleichungssystem (V) zwei Gleichungen enthält, können zwei Unbekannte bestimmt werden.  Bei vorgegebener Temperatur, bekanntem Dampfdruck und den mit den Gleichungen (II) und (III) bekannten Volumina v’ und v” können das die in der Zustandsgleichung  ZG(p, v, T) =0 enthaltenen unbekannten Parameter der jeweilig vorausgesetzten Zustandsgleichung sein (z.B. der van der Waals-Gleichung, der Redlich- Kwong- Gleichung, der Peng- Robinson- Gleichung  usw. ).

Es zeigt sich, daß man auf diese Art und Weise tatsächlich sinnvolle Ergebnisse erhält. Sowohl für Zustandsgleichungen des van der Waals- Typs als auch für andere können so die Parameter dieser Gleichungen mit (V) berechnet werden.  Auf solch einer Grundlage ist dann die Bestimmung von Realgasfaktoren von Flüssigkeiten bei  vorgegebener Temperatur vom Dampfdruck bis hin zu hohen Drücken von z. B. 100MPa  bei guter Übereinstimmung mit Meßwerten möglich. Die Fehler der Rechnung sind selbst bis zu hohen Drücken gering. Bei Voraussetzung herkömmlicher Zustandsgleichungen sind die Fehler viel größer.

Die Volumina bzw. Dichten realer Gase können für eine bestimmte Temperatur und einen vorgegebenen Druck ohne Benutzung einer der bisher benutzten Zustandsgleichungen mit (I) berechnet werden- die sonst in der Technischen Thermodynamik und Verfahrenstechnik zur Berechnung realer Zustandswerte erforderlichen empirischen Größen- wie z.B.  azentrische Faktoren ω sind sind gar nicht mehr erforderlich.

Beispiele für Ergebnisse der Nachrechnungen  einzelner technisch interessanter Stoffe sind die Artikel : Tritium, Ozon, Uranhexafluorid, Schwefeldioxid, Stickstoffmonooxid, Aceton, Dioxan, Acetonitril, flüssige Erdgas- und Erdölkomponenten.   Für einige  flüssige Metalle, für die  noch keine herkömmlichen Berechnungsmöglichkeiten existieren, werden die kritischen Temperaturen und die Flüssigkeits- und Sattdampfvolumina eingeschätzt. Auch die Möglichkeit der Formulierung sehr genauer Temperaturfunktionen für das Volumen bzw. für die Dichte von Flüssigkeiten in einem  Bereich von der Schmelztemperatur bis nahe unter der kritischen Temperatur wird erläutert.

Die Anwendung einer allgemeinen Dampfdruckdifferentialgleichung

Juli 28th, 2016

dd12dd22dd3dd4dd5dd6dd7dd8dd9dd10dd111

Die Zustandsgleichung zur Berechnung thermophysikalischer Daten nahe am kritischen Punkt

Juli 7th, 2016

vol19

vol22vol32vol42

vol5vol6

Die Auswertung und Anwendung kritischer Phänomene der Theoretischen Physik

Juni 16th, 2015

Die Bestimmung der Stoffeigenschaften von Flüssigkeiten und Gasen in der kritischen Region  eines Stoffes ist mit besonderen Schwierigkeiten verbunden.  Die Ursache dieser Schwierigkeiten ist letzlich das Eintreten kritischer Phänomene, die in der kritischen Region  nicht den klassischen van der Waals- Teilchenwechselwirkungen entsprechen. Auf neue sich aus der physikalischen Theorie kritischer Phänomene ergebende Möglichkeiten ist hinzuweisen. Sie ergeben sich u. a.  aus Untersuchungen zur Festlegung kritischer  Exponenten mit völlig neuen Ergebnissen. Es zeigt sich auf der Grundlage dieser neuen Möglichkeiten, daß nun pvT- Daten auch im kritischen Gebiet mit erfreulicher Genauigkeit nur durch Rechnung wiedergegeben werden können. Das betrfft die pv- Werte auf der kritischen Isotherme und auf Isothermen unterhalb und oberhalb nahe der kritischen Temperatur und auch Näherungen für die unterhalb der kritischen Temperatur bestehenden Sättigungsvolumina v′, v′′ für Flüssigkeit und Dampf.

Da die Vermessung von pvT- Daten in den kritischen Bereichen von Stoffen schwierig, aufwändig und teuer ist, gibt es gar nicht so viele aus Stoffdatenbanken abrufbare Ergebnisse.  Allerdings sind z. B. in der web-site “nist webbook” für etliche technisch wichtige Stoffe Ergebnisse mit den wahrscheinlich gegenwärtig am besten geeigneten überwiegend  empirischen Zustandsgleichungen mit “Java” abrufbar.  Auch für die jeweilige kritische Region geben die in “nist webbook” verwendeten Zustandsgleichungen pvT- Daten an. Allerdings betonen die verschiedenen Autoren immer wieder die Feststellung: “The Uncertainties are higher….”.  Trotz der labortechnisch mit Aufwand erfaßten Stoffdaten besteht die Einschätzung, daß mit den verwendeten weitgehend empirischen herkömmlichen  Zustandsgleichungen im kritischen Gebiet die Realität mit nur größeren Fehlern beschrieben wird.

Sehr interessant ist nun ein Vergleich der Ergebnisse, die  sich für die kritische Isotherme eines Stoffes mit den neuen sich aus der physikalischen Theorie kritischer Phänomene  abgeleiteten Gleichungen und den bisherigen weitgehend empirischen Zustandsgleichungen ergeben. Es zeigt sich die in der Größenordnung der Werte weitgehende Übereinstimmung. Eigentlich ist dabei unklar, welcher der berechneten Werte der Realität mehr entspricht. Allerdings ist auf einen sehr wichtigen Unterschied hinzuweisen: Die neuen aus der physikalischen Theorie kritischer Phänomene folgenden Gleichungen benötigen nur allein die Kenntnis der kritischen Daten eines Stoffes, während bisherige Zustandsgleichungen neben zusätzlichen Meßwerterfassungen auch in der kritischen Region außerdem noch Anpassungsrechnungen der Meßwerte an die vorausgesetzte Zustandsgleichung erfordern.

Ergebnisse der Berechnung von Volumina auf  der kritischen Isotherme eines Stoffes  oder in ihrer  Nähe bei vorgegebenem Druck sind bereits als Beispiele für etliche Stoffe in Artikeln dieses Bloggs im Vergleich zu Werten mit herkömmlichen empirischen Zustandsgleichungen genannt (s. z. B. Berechnungen des Verlaufs kritischer Isothermen/ September bis Oktober 2014 für Propylen, Wasser, Kohlenstoffdioxid, Methanol, Deuterium, Benzol, Wasserstoff, Helium u.a.).

Leider sind dem Autor keine weiteren pvT- Datenangaben bekannt, die qualitativ durch Meßwerte im kritischen Bereich ähnlich der “nist webbook”- Datenbank belegt sind. Es ist deshalb sehr wünschenswert, durch Meßwerte erfaßte pvT- Daten des kritischen Bereichs von weiteren Stoffen zu erhalten, um eine Nachrechnung mit den neuen aus der Theorie kritischer Phänomene nun vorliegenden Berechnungsgleichungen zum Ergebnisvergleich vornehmen zu können.

Aus den zur Theorie kritischer Phänomene durchgeführten Untersuchungen ergeben sich in Bezug auf das Verhalten von Flüssigkeiten wichtige Ergebnisse. Auch Flüssigkeiten besitzen ein pvT- Verhalten. Längst ist das nicht so ausgeprägt wie das von Gasen, da sich das Volumen viel weniger mit Druck und Temperatur ändert. Bei genauer Betrachtung aber, muß die Temperatur- und Druckabhängigkeit des Volumens (z.B. die Abhängigkeit des Sättigungsvolumens von der Temperatur)  berücksichtigt werden. Dafür aber gibt es bisher kaum praktikable Theorie- Ansätze auf einer physikalisch begründeten Basis. Alle bisherigen Ansätze zu einer allgemeinen Theorie der Flüssigkeiten gehen letztlich immer vom jeweiligen Molekülaufbau, von den zwischenmolekularen Wechselwirkungen, von molekulartheoretischen Ansätzen der Quantenmechanik und Statistischen Thermodynamik bis hin zur Statistik mit Monte- Carlo- Modellen usw. aus. Die gesuchte Aussage zu einer möglichst allgemeinen Erklärung und mathematischen Fassung der Druck-Volumen- Temperatur- Eigenschaften von Flüssigkeiten wurde so bisher nicht gefunden.

Aus der physikalischen Theorie kritischer Phänomene ergibt sich nun aber eine Zustandsgleichung als eine Näherung speziell für Flüssigkeiten, die keineswegs nur in der kritischen Region, sondern auch für Temperaturen weit unter der kritischen Temperatur  gilt. Damit kann nun das mit zunehmendem  Druck sich verringernde Volumen einer Flüssigkeit entlang einer Isotherme bzw. anderer Zustandsänderungen berechnet werden- auch wenn diese Effekte klein sind. In der Gemischthermodynamik spielen diese Effekte aber eine weit größere Rolle. Es ist darauf hinzuweisen, daß nun mit Zustandsgleichungen speziell für Flüssigkeiten auch völlig  neue Ansätze zur Thermodynamik von Mischungen entstehen. Mit herkömmlichen Zustandsgleichungen für Stoffgemische speziell zur Erfassung der flüssigen Phase sind oft große Schwierigkeiten verbunden, die bis heute nur mit hohem meßtechnischen und empirischen Aufwand für technische Belange gelöst werden müssen.

Die für Flüssigkeiten bestehenden Zustandsfunktionen haben zur Erklärung und Beschreibung des Verhaltens von Flüssigkeiten nur den kritischen Punkt eines Stoffes mit seinen kritischen Phänomenen als Ausgangspunkt, indem die sonst nur in einem engen Bereich um die kritische Temperatur gültigen Gesetze kritischer Phänomene auf Temperaturen weit unterhalb der kritischen Temperatur übertragen werden konnten. Das bedeutet, dass  Flüssigkeitseigenschaften allein nur mit den kritischen Daten eines Stoffes und seiner Temperatur festgelegt sind und auch so als Näherung berechnet werden können.

Wegen der nun für Flüssigkeiten und realen Gasen auf Grundlage der Theorie kritischer Phänomene  bestehenden pvT- Zustandsfunktionen ergibt sich durch Anwendung des Maxwell- Kriteriums sogar die Möglichkeit, die Sättigungsvolumina v’ und v” von Stoffen für Flüssigkeit und Dampf speziell in der kritischen Region in Abhängigkeit von der Temperatur als Näherung zu berechnen. Solch eine Möglichkeit bestand bisher gar nicht. Die Theorie und die Berechnungen dazu sind  durchaus kompliziert. Eine kurze zusammenfassende Erklärung ist im Artikel “Die Bestimmung der Sättigungsvolumina von Flüssigkeit und Dampf in der kritischen Region von reinen Stoffen” dieses Bloggs vom 30.Oktober 2014 gegeben (mit Rechenergebnissen für verschiedene Stoffe im Vergleich zur Datenbank “nist webbook”).

Da auf der Grundlage der zu kritischen Phänomenen durchgeführten Untersuchungen Näherungen zur Bestimmung der Volumina von Flüssigkeit und Dampf in Abhängigkeit von der Temperatur und des Drucks  bestehen, können nun auch die sogen.  Realgasfaktoren  Z = pv/RT  eines Stoffes  als Temperaturfunktionen  im Sättigungszustand als auch allgemein als Funktion des Drucks und der Temperatur berechnet werden. Dazu müssen nur die kritischen Daten eines Stoffes und ein pvT- Datentripel bei niedrigen Dampfdruck und entsprechend niedriger Temperatur bekannt sein (z. B. beim normalen Siedepunkt).

Auf die folgenden Veröffentlichungen des Autors, die die Thermodynamik von Flüssigkeiten und Gasen allgemein und speziell in der kritischen Region von Stoffen betreffen, ist hinzuweisen:

-“Stoffwerte von Flüssigkeiten und Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene”, ISBN 978-3-00-027253-0, 2009

- “Die Berechnung von Druck- und Volumendaten reiner Stoffe”, ISBN 3-00-015256-3

- “Neue Berechnungsmöglichkeiten thermophysikalischer Daten für reine Stoffe und Gemische”, ISBN 3-00-018592-5, ISBN 978-3-018592-2.

Oktober 30th, 2014

scannen00073scannen00083scannen00091

Oktober 16th, 2014

scannen0006

Oktober 15th, 2014

scannen0004

Oktober 14th, 2014

scannen0003

Oktober 12th, 2014

scannen00025

September 28th, 2014

scannen0014

September 27th, 2014

scannen00131